

POCT bilirubin management in neonates

Dr Agnès Mailloux

Head of Service d'Hémobiologie Fœtale et Périnatale CNRHP DMU BioGeM Site Saint-Antoine — APHP Sorbonne Université — Paris — France Member of IFCC WG-NB Neonatal Bilirubin

Point-of-Care Testing: Home, Hospital and Beyond May 20-21, 2023 "La Nuvola" Roma Convention Center, Rome, Italy

Clinical contexts, analytical devices and challenges

About neonatal bilirubinemia

Bilirubin in neonates Clinical Contexts

- In pediatrics, accurate measurement of total serum bilirubin (TSB) is of major importance for reliable diagnosis and appropriate management of neonatal jaundice
- Clinical indications
 - **➤** Screening of neonatal kernicterus
 - >Clinical decision of treatment initiation
 - ✓ therapeutic indication curves (phototherapy and exchange transfusion) based on the total bilirubin (BTS) blood assay
 - >Treatment follow-up

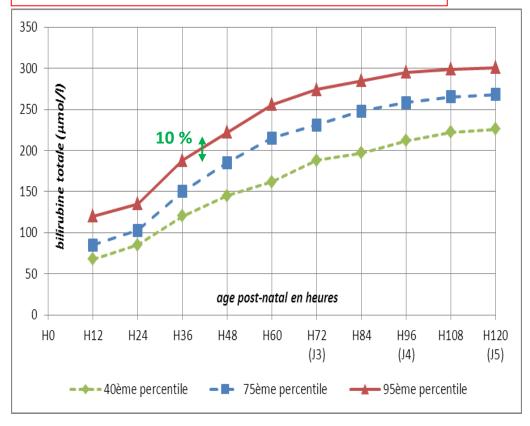
diagnosis. Recommendation SFN 2017; 24(2): 192-203.

- > Decision to leave the maternity ward
- > Follow-up after leaving the maternity ward (HAS recommendation)

Clinical goal: prevention of severe hyperbilirubinemia

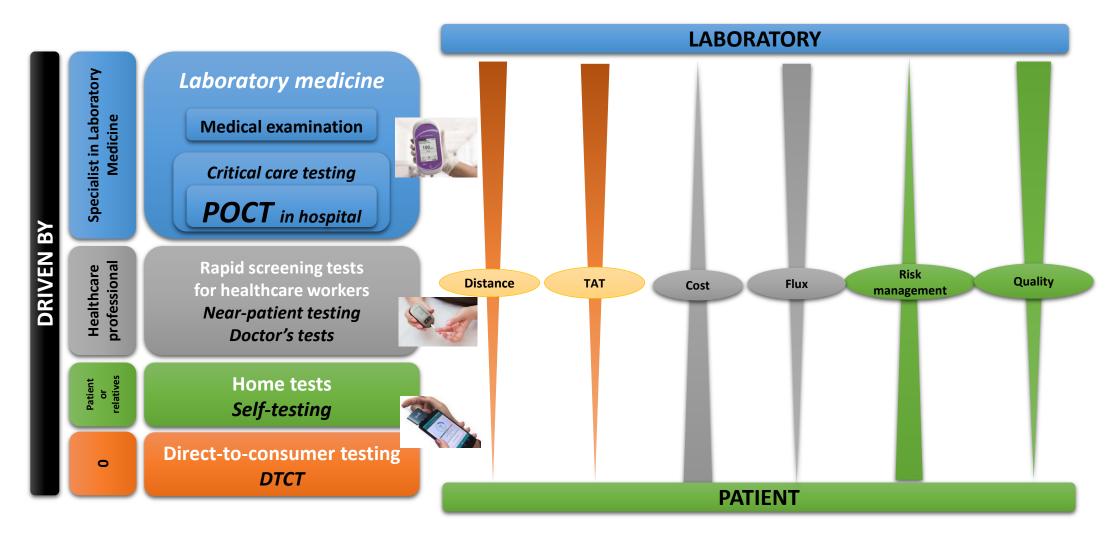
Cortey A et al. Management of jaundice in the newborn ≥ 35 GW: from screening to follow-after discharge. Guidelines for clinical practice – management and treatments after

Bilirubin in neonates Clinical Contexts (2)

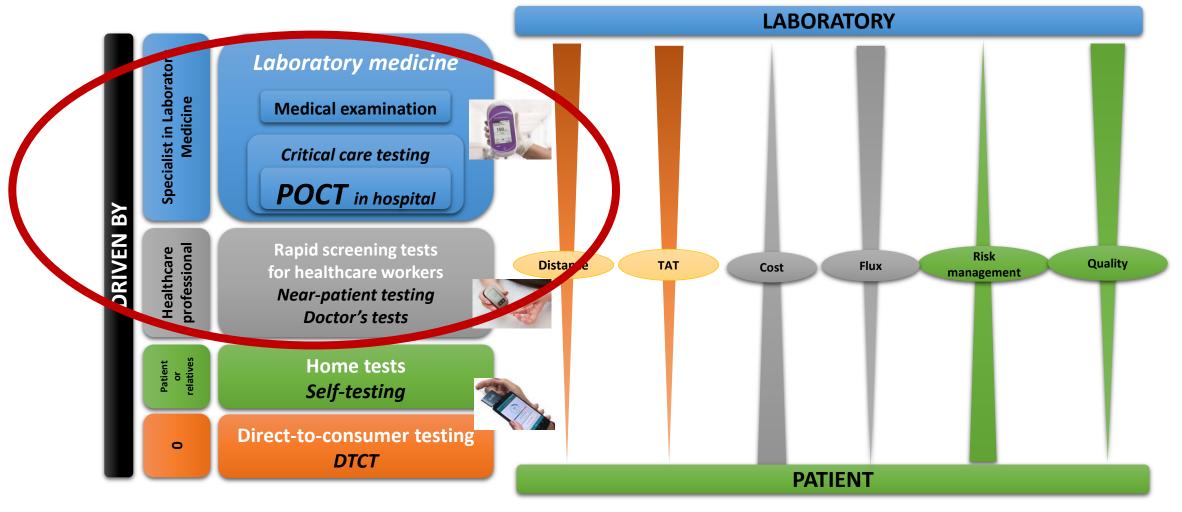

- As in many countries, the French Society of Neonatology (SFN) has issued "Jaundice" recommendations incorporating:
 - ✓ Reference values of bilirubinemia: nomogram
 - ✓ Therapeutic indication curves (phototherapy and exchange transfusion) based on the total bilirubin (TSB) blood assay
 - ✓ Keys for the articulation in practice between TcB value (noninvasive quantification) and TSB value (invasive reference quantification) by blood measurement of total bilirubin.
- ➤ The therapeutic indications for jaundice (phototherapy and exchange transfusion) are based on the total bilirubin (BTS) blood assay, interpreted according to
 - ✓ gestational age,
 - ✓ postnatal age in hours and
 - ✓ conditions of vulnerability to bilirubin toxicity

Bhutani VK, Johnson L: A proposal to prevent severe neonatal hyperbilirubinemia and kernicterus. J Perinatol. 2009 Feb;29 Suppl 1:S61-7

Cortey A., Tourneux P., Bedu A., Renesme L., Raignoux J., Casper C., Truffert P. Management of jaundice in the $newborn \ge 35$ GW: from screening to follow-after discharge Guidelines for clinical practice – management and treatments after diagnosis. Recommendation SFN 2015


American Academy of Pediatrics, Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation [published correction appears in Pediatrics. 2004;114:1138]. Pediatrics. 2004;114:297 –316

BTS if TcB >75°percentile or >250 μ mol/L Emergency if blinking or > 957 mep.


Analytical goal: provide a reliable and accurate result (<10 % total error), even in POCT, for an optimized clinical decision

"Testing" outside clinical laboratory: a confusing continuum

4 situations: POCT, rapid screening tests, home tests and DTCT

"Testing" outside clinical laboratory: a confusing continuum 4 situations: POCT, rapid screening tests, home tests and DTCT

POCT for bilirubin in neonates is limited to tests driven by laboratory or by healthcare workers generally inside the hospital

Pyramid of clinical needs and neonatal bilirubinemia

D	TAT
km	h

0,01 0,1

0,1 <

>1 <(

PATIENT

*Screening tests: in France under supervision of healthcare professionals, not by lab

Transcutaneous
bilirubinometer TcB
Screening tests devices*
Non invasive

POCT device**
Capillary or whole blood

Stat analyzer
Serum or plasma

Clinical lab

Core lab analyzers
Serum or plasma

**POCT: in France under supervision of clinical lab

Utilisation clinique

Transcutaneous test for the evaluation of bilirubinemia

- ✓ Screening
- ✓ Treatment Phototherapy
- ✓ Exit decision
- ✓ Post-release follow-up

Confirmation of screening tests results by a lab result

- ✓ Absence of displayed result of the Btc
- ✓ Early jaundice
- ✓ Btc value exceeding the 95th percentile of the nomogram

Confirmation of screening tests results by a lab result

- ✓ Absence of displayed result of the Btc
- ✓ Early jaundice
- ✓ Btc value exceeding the 95th percentile of the nomogram

Confirmation of screening tests results by a lab result

- ✓ Btc > 250 μmol/L
- ✓ Btc > 75 percentile of nomogram
- ✓ Btc with phototherapy indication value
- ✓ Discrepancy between visual assessment of jaundice and Btc
- ✓ Checking the effectiveness of phototherapy during the session and within 24 hours.

NICU

Clinical unit

TROD

Laboratory needs and analytical challenges

Reference Laboratory (LNE) • Bilirubin: Doumas method/SRM916ab Reference method/material Bilirubin CNRHP Method Diazo/Indiko **Specialized Lab** Switchable standard (CNRHP) CNRHP BE1805 • 270,6 ± 0,7 μmol/L Supplier standard Vendor method **Proximity lab** (Atellica) ISU connection Accreditation 15189 **POCT** (GEM5000. BiliStick®)

> To solve at each level

- ✓ Specialized labs: connection to the IS, national harmonization studies
- ✓ Proximity lab: choice of techniques, help with interpretation vs. consensual thresholds, inter-laboratory comparability monitoring (EQA/PT)
- ✓ POCT: same + comparability monitoring with the central lab
- TcB: help in choosing devices + lab and/or POCT results comparability

In response to these challenges, the CNRHP lab has carried out several local or national studies to progress towards better emergency interpretation of neonatal bilirubin results.

Vendor method

ISU connection

Screening test

(TcB)

Accreditation 22870

Screening test

DM-DIV

IVDR

CE marking,

What to do at central lab level?

About standardization and harmonization of total serum bilirubin

CNRHP Study Connection to International System of Units

STANDARDIZATION OF SERUM TOTAL BILIRUBIN MEASUREMENT FOR IMPROVED DIAGNOSIS AND MANAGEMENT OF NEONATAL JAUNDICE

Vincent DELATOUR¹, Michel VAUBOURDOLLE², Elisabeth LASNIER², Nathalie MARIO², Sophie BAILLEUL², Marie-Clotilde HAGUET² and Agnès MAILLOUX³

¹LNE, ²Services de Biochimie, HUEP, AP-HP, Paris, France, ³CNRHP, Saint Antoine, AP-HP, Paris, France Euromedlab — Athènes — Juin 2017

Identification d'un calibrant commutable pour réaliser une calibration in silico

ETALON BNL

Reference method value

Calibration laboratory daterial of investigation of

Reference laboratory III of the RfB Calibrator for bilirubin BE1449 Laboratoire national de métrologie et d'essais (LNE) LNE

Customer Method Period of measurements

Analyte	Reference method value ¹	Uncertainty of measurement ²	Number of accepted results
Bilirubin	287,4 µmol/L	6,3 µmol/L 0,37 mg/dL	4 Series on 2 Days
	16.80 mg/dL	2,2 %.	12 Single values

One specimen was thawed on the first measurement day for series 1 and series 2.

One specimen was thawed on the second measurement day for series 3 and one fearlies 4.

The reference method value is the mean of all single values of all measurement

The uncertainty of measurement is the combined expanded uncertainty.
The coverage factor is k = 2.0

Decrees of teactors: v = x50

The covariage factor is k = 2.0 Degrees of the The unconsistity takes into account: Standard error of the mean of the means

Standard error of the mean of the means. Standard uncertainty of the adjustment of the wavelength Standard uncertainty of the spectrometric measurement. Standard uncertainty of the volume fraction of sample.

Standard uncertainty due to the drift of the baseline Standard uncertainty due to stray light Standard uncertainty due to aging, evaporation and time measurements

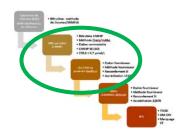
of Uncertainty in Measurement*.

Note: The coefficient of variation (CV) of the combined single values is 1,

Hannover, 2014-12-18

Head of the calibration laboratory	Ferson in charge
102	Marie 2. WILL
Dr. D. Grote-Koska	R. Strache/R. Klauke

	SAINT-ANTOINE Hospital	
	Lab 1 : CNRHP	
	Lab 2 : LBU	
Laboratories	Lab 3 : Biochemistry lab	
Laboratories	TROUSSEAU Hospital	
	Lab 4 : Biochemistry lab	
	TENON Hospital	
	Lab 5 : Biochemistry lab	
	Indiko Thermo-scientific	
	AU640 Beckman-Coulter	
Analyzers	DCX 800 Beckman-Coulter	
	Architect ABBOTT	
	Modular Roche	
	Method 1: Diazo Beckman / Indiko (Lab 1)	
	Method 2 : Spectral / Indiko (Lab 1)	
	Method 3 : Diazo Beckman / DXC 800 (Lab 2)	
Methods	Method 4 : Spectral /DXC 800 (Lab 2)	
ivietnoas	Method 5 : Diazo / AU640 (labo3)	
	Method 6: Diazo Abbott / Architect (Lab 5)	
	Method 7: DPD / Roche Modular (Lab 4)	
	Method 8: Synermed / Roche Modular (Lab 4	

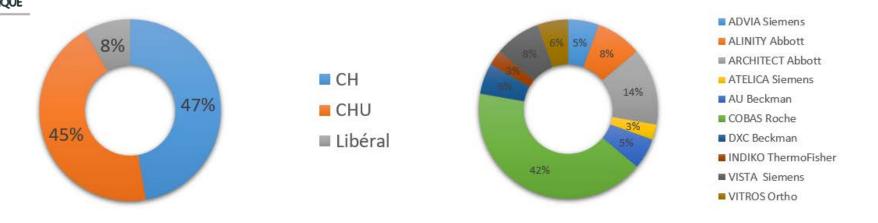

	BNLSEG	BNLAEG	HANL	HANH	PBQ
Method 1: Diazo Beckman / Indiko (Lab 1)	С	С	С	С	С
Method 2 : Spectral / Indiko (Lab 1)	NC	NC	С	С	NC
Method 3 : Diazo Beckman / DXC 800 (Lab 2)	С	NC	1	С	NC
Method 4 : Spectral /DXC 800 (Lab 2)	NC	С	С	NC	1
Method 5 : Diazo / AU640 (labo3)	С	С	С	С	NC
Method 6 : Diazo Abbott / Architect (Lab 5)	С	С	С	С	NC
Method 7: DPD / Roche Modular (Lab 4)	С	С	С	С	NC
Method 8 : Synermed / Roche Modular (Lab 4)	С	С	С	С	NC

STANDARDIZATION OF SERUM TOTAL BILIRUBIN MEASUREMENT FOR IMPROVED DIAGNOSIS AND MANAGEMENT OF NEONATAL JAUNDICE

Vincent DELATOUR, Michel VAUBOURDOLLE, Elisabeth LASNIER, Nathalie MARIO, Sophie BAILLEUL, Marie-Clotilde HAGUE and Agnès MAILLOUX, EUROMEDLAB, Athènes

- This study allowed to
 - Check the commutability of a CNRHP BNL standard and an LNE HAN control material for 8 automaton/technical pairs (exception spectral method)
 - ✓ Assign a value to the CNRHP BNL standard by connection carried out by the LNE
- And to be able to use
 - ✓ The CNRHP-BNL standard for linking the total bilirubin assays carried out at the CNRHP and thus determining the expected values of Bilirubin during a harmonization study
 - ✓ The switchable control samples with assigned values

French National multicenter study CNRHP – SFBC – CNBH Harmonization between French labs (1)

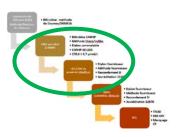

Synthèse

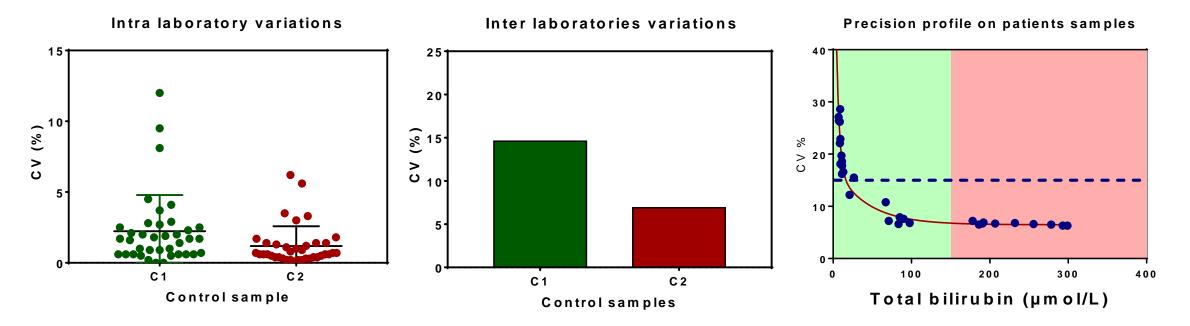
Ann Biol Clin 2020 ; 78 (4) : 383-97

Recommandations analytiques et cliniques pour l'utilisation de la bilirubinémie en néonatalogie

Analytical and clinical guidelines on neonatal bilirubinemia

Agnès Mailloux¹
Anne Cortey²
Vincent Delatour³
Carole Poupon⁴
Michèle Rota⁵
François Schmitt⁶
Michel Vaubourdolle⁷
Groupe de travail
SFBC-CNBH-CNRHP
« Bilirubine néonatale »

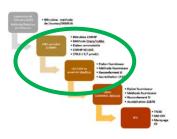



Laboratories repartition (n=36)

- > Hospitals representation 92%
- Presence of mainly-used analyzers in France
- Over representation of Roche analyzers

We had a representative sample of blood bilirubin measurement methods in France

French National multicenter study CNRHP – SFBC – CNBH Harmonization between French labs (2) - fidelity



Intra and inter-laboratory variations on control and patient samples at decision thresholds (C2) in neonatology: globally acceptable

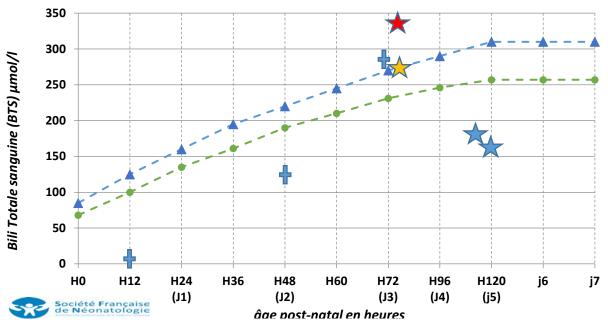
The methods most used in France by LBMs are precise in particular in areas of high values (>150 µmol/L) of clinical interest in neonatology

French National multicenter study CNRHP – SFBC – CNBH Harmonization between French labs (3) – Accuracy

- ➤ The methods used in France present significant inter-technical differences, linked to a drift in standardization over time (SRM916a).
- > Above 150 μmol/L, differences from the expected values that can influence the clinical decision (>20%) are observed with:
 - ✓ Either an overestimation without major clinical impact: phototherapy initiated incorrectly or more quickly
 - ✓ Either an underestimation with the Roche method (the most widespread in France): possible clinical impact with possible delay in management

IVD company	Analyzer	Relative bias for patients >150 μM
Abbott	Alinity	+ 10
	Architect	+ 20 (dispersion)
Beckman	AU	0
	DXc	+ 5
Ortho	Vitros TBIL	+ 30 (no clinical incidence)
	Vitros BuBc	- 10
Roche	Cobas	- 25 (clinical incidence but possible correction in silico
Siemens	Advia	+ 15
	Atellica	+ 20
	Vista	+ 5
ThermoFisher	Indiko	+ 10

French National multicenter study CNRHP – SFBC – CNBH Harmonization between French labs (4) – Clinical incidence

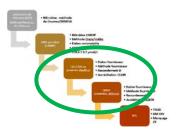


Born at 37 WA eutrophic vaginally from a first mother with blood group A RhD pos and RAI negative.

Good fit. Exclusive breastfeeding with difficulty getting started.

Weight loss at H72 12%

No early jaundice but severe jaundice at H72 with TcB at 270 μmol/l motivating TSB locally at 264 μmol/l and at CNRHP at 302 μmol/l


The clinical impact of an underestimation of serum bilirubin has been demonstrated in a case at Armand Trousseau Hospital. Requests for advice from the CNRHP confirmed that this type of situation occurs regularly in other centers. This analytical study of multicenter harmonization allowed

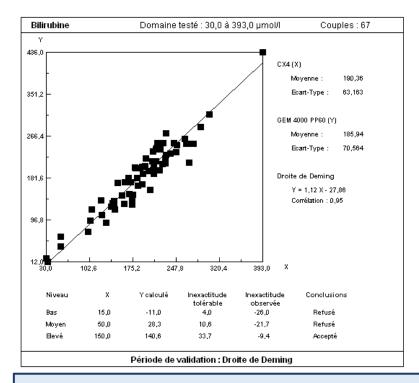
- ✓ to better specify the nature and intensity of inter-technical variations for the measurement of total bilirubin concentrations in neonatology, depending on the techniques used
- ✓ to propose simple measures to correct the results when consequences on the clinical decision can occur with
 a direct application of the interpretation criteria recommended by the scientific societies (SFN)

What to do at POCT level?

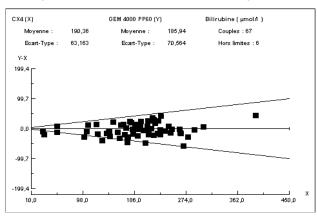
About clinic biological partnerships

Use of screening tests (TcB) and POCT bilirubin 2019 SFBC-CNBH-CNRHP Group survey

	Pratique majoritaire	Risk in neonatology
Transcutaneous bilirubin (TcB) Screening test	 Knowledge by clinical lab specialists: ➤ Of the use of a TcB measurement device in their hospital: 30% ➤ Of the need for confirmation by the central lab of an alert value before a therapeutic decision: 20% ➤ Of the comparability of local TcB vs TB results: 10% 	Incomplete management of results comparability between the different techniques with risk of erroneous interpretation in a critical situation Clinic biological partnership does not meet the clinical needs in neonatology
Whole blood Total Bilirubin POCT	 No device known 75% Implementation in project 3% Existing system for monitoring neonatology (work room, NICU, etc.) 16% 	Clinic biological partnership does not meet the clinical needs in neonatology


Some issues have been demonstrated

- ✓ No continuity or coordination of neonatology practices between TcB, POCT (BT) and laboratory assays (BT).
- **✓ Confirmation of TcB** before therapeutic decision not made or not known
- ✓ Btc-BT comparability not assessed with risk of misinterpretation of results


CNRHP study – Comparability POCT vs Central Lab Use of the Werfen GEM 4000 CO-oximeter in Maternity

Total bilirubin assay using GEM Premier 4000: promising results for jaundice diagnosis in maternity wards, CPOCT, Boston 2010

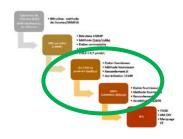
Comparison study between bilirubin assay on the GEM 4000 and that carried out at the CNRHP by diazotization on Beckman CX4 CE (ISU connected method)

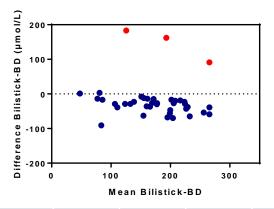
POCT BG/electrolytes devices that use CO-oximetry to measure bilirubin on whole blood are very precise and accurate and make it possible to obtain reliable values immediately in the delivery room.

They can be used both for the diagnosis of fetal hypoxia and for the confirmation of TcB

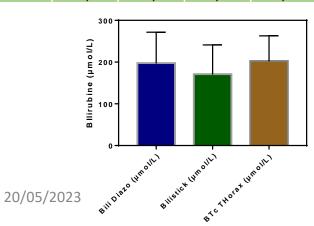
Performance

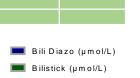
Very good precision Very good comparability Excellent practicability


Quality


Efficient IT connection with identity monitoring and integrated quality assurance
Operator skills management
Accreditation 22870 – Risk management

Other advantages


Mixed use with fetal hypoxia assessment (scalp + cord blood)


CNRHP study – Comparability POCT vs Central Lab Use of BiliStick® on capillary blood

#	Bilistick	Reference	Bias	Bias%	Acceptable limit (%)	Conclusion
1	251	261	-10	-3,8		Accepted
2	156	184	-28	-15,2		Rejected
3	316	339,5	-23,5	-6,9	15	Accepted
4	171	184,5	-13,5	-7,3	15	Accepted
5	332	338	-6	-1,8		Accepted
6	253	260,7	-7,7	-3,0		Accepted
Mean	246,5	261,3	-14,8	-6,3		
SD	72.2	69.1	9.0	4.9		

- Correct precision in POCT context: CV<6% at 2 levels (200 and 270 μmol/L)
- Comparability POCT whole blood vs LBM plasma globally acceptable but average underestimation of 20 μmol/L vs expected lab value
- Comparability with TcB thorax: average underestimation of 20 µmol/L vs. TcB measured value. BiliStick® cannot be used to confirm BTc.
- Significant interference of hemolysis but good detection by the BiliStick® in 5 out of 6 cases. Do not use BiliStick® in case of hemolysis.
- Risk management by central lab difficult under ISO 22870 accreditation: no computer connection or operator management
- Less efficient than a CO-Oximeter integrated in a BG/Lytes analyzer
- Interesting for centers that do not have either TcB or stat TSB

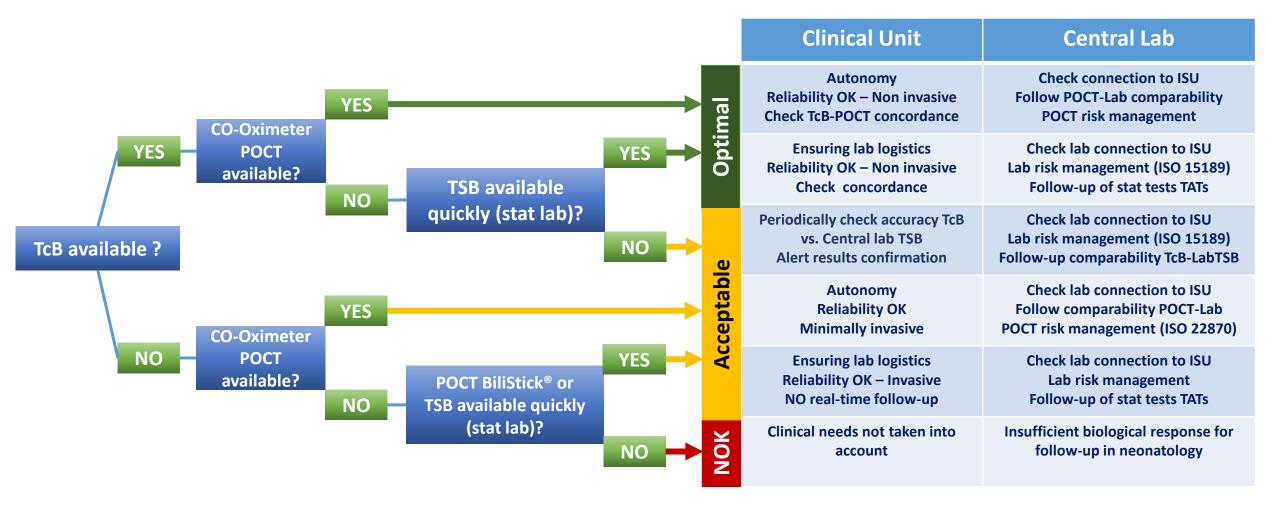
POCT determination of neonatal capillary bilirubinemia using BiliStick®: analytical performances and clinical value, EUROMEDLAB, MUNICH 2022

What to do for care optimization?

Using all emerging technologies

For an optimization of care

From the transcutaneous bilirubinometer to the laboratory via POCT devices


	Device	Advantages	Issues	
Screening	Transcutaneous Bilirubinometers	Non invasive Results in real time	Heavy investment for a small structure	
	POCT CO-oximeter (GEM)	Minimally invasive – Reliable results Optimized risk management Mixed use for hypoxia management	Heavy investment for a small structure Implication of proximity lab on ISO22870 accreditation or risk management	
POCT	Portable device for photometric measurement on capillary blood (BiliStick®)	Minimally invasive Usable if no TcB or POCT CO-oximeter	Underestimation of results No confirmation of TcB Hemolysis interference Adapt interpretation thresholds	
Lab exam	Biochemistry stat analyzer	Reliable results Connection to ISU - harmonization Accreditation 15189 or risk management	Invasive (blood sampling) Logistics issues Inter-techniques differences Too long TAT for real-time follow-up	

20/05/2023

For an optimization of care

From the transcutaneous bilirubinometer to the laboratory via POCT devices

Current and emerging technologies for the timely screening and diagnosis of neonatal jaundice

Mercy Thomas, Ronda F. Greaves, David G. Tingay, Tze Ping Loh, Vera Ignjatovic, Fiona Newall, Michelle Oeum, Mai Thi Chi Tran & Anushi E. Rajapaksa

Critical Reviews in Clinical Laboratory Sciences, 59:5, 332-352, DOI: 10.1080/10408363.2022.2038074

- Ever-increasing need for a low-cost, simple to use screening technology to improve timely diagnosis and management of neonatal jaundice
- Review the literature, focusing on emerging technologies in the screening and diagnosing of neonatal jaundice
- ➤ Report on the challenges associated with the existing screening tools, followed by an overview of emerging sensors currently in pre-clinical development and the emerging POC devices in clinical trials to advance the screening of neonatal jaundice
- Benefits offered by emerging POC devices include their ease of use, low cost, and the accessibility of rapid response test results
- > BUT further clinical trials are required to overcome the current limitations of the emerging POC's before their implementation in clinical settings

The need for a simple to use, low-cost POC jaundice detection technology for newborns remains an unsolved challenge globally

Conclusions

- > Follow-up of neonatal jaundice important today
 - **✓** Resurgence of jaundice + shortening of hospital LOS
 - ✓ Increased distance and time from core labs
 - ✓ Analytical discrepancies with risks of erroneous or delayed interpretation
- **➤** Necessary efficient clinical-biological collaboration
 - ✓ According to geographical and functional context, discussion to
 optimize the process of measuring neonatal bilirubin
 - ✓ Use the technological solutions available in Lab tests POCT Screening tests
 - √ Manage risks via an adapted QMS managed by the LBM

Acknowledgements

DMU BioGeM (Pr R. Levy)
LBM EST PARISIEN (Dr M. VAUBOURDOLLE)

Service d'Hémobiologie foetale et périnatale - CNRHP

Technicians / receptionists / secretaries / engineers CNRHP, cadre

LM specialists: Dr C. TOLY-NDOUR, Dr S. HUGUET-JACQUOT, Dr H. DELABY, Dr F. KHETTAB, Dr N. BOUTARFA, Dr R. MESSINE, Dr J.

BEAUD, Dr J. BABINET, Dr R. PETERMANN

Stat lab Saint-Antoine: technicians and LM specialists

DMU ORYGINE (Pr J-M. JOUANNIC)

Clinical Unit - CNRHP (Pr J-M. JOUANNIC)

Permanence médicale du CNRHP

Nurses

Pediatricians: Dr M-G. Guillemin, Dr N. ABED, Dr J. WIRTH

Obstetricians: Dr P. MAURICE, Dr L. GUILBAUD, Dr F. DHOMBRES, Dr L. FRANCHINARD

Midwives coordinator: B. LAFON

And we never forget...

Dr Yves BROSSARD

Dr Anne CORTEY

Dr Emeline MAISONNEUVE