

SOCIÉTÉ FRANÇAISE DE PÉDIATRIE

CONGRÈS 2017 Marseille du 17 au 19 Mai 2017

« La pédiatrie au pluriel, l'enfant au singulier »

Table ronde

Premières recommandations françaises sur la prise en charge de l'ictère du nouveau-né à terme: Quel impact sur nos pratiques?

Photothérapie : Bases scientifiques pour guider la prescription

Dr Anne Cortey,

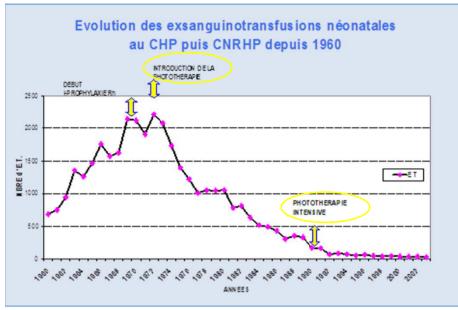
Centre National de Référence en Hémobiologie Périnatale (CNRHP)

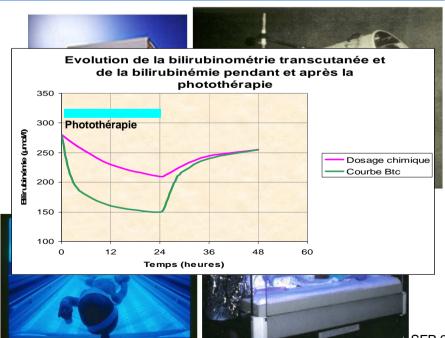
Pédiatre, Responsable UF clinique (CNRHP) Pôle Périnatalité GHUEst parisien Hôpital Trousseau, Paris

SOCIÉTÉ FRANÇAISE DE PÉDIATRIE

CONGRÈS 2017 Marseille du 17 au 19 Mai 2017

« La pédiatrie au pluriel, l'enfant au singulier »


Déclaration de liens d'intérêt potentiels


Titre de la présentation

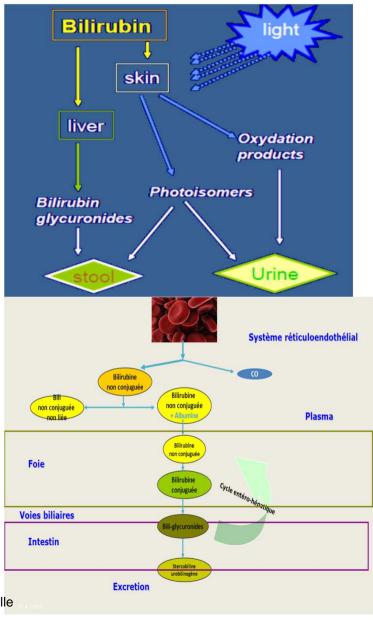
Conférencier : Docteur, CORTEY, Anne, Paris

☑ Je n'ai pas de lien d'intérêt potentiel à déclarer

Photothérapie - introduction

- Principal traitement de l'ictère à bilirubine non conjuguée
- Mécanisme d'action: interaction de la lumière incidente avec la bilirubine non conjuguée située dans la peau. Absorption génère des photo-dérivés
- ⇒ PT n'est pas un traitement de l'ictère cholestatique
- ⇒ Bilirubinométrie transcutanée perturbée dans les 12h00 après fin de photothérapie.

SFP 2017 - Marseille

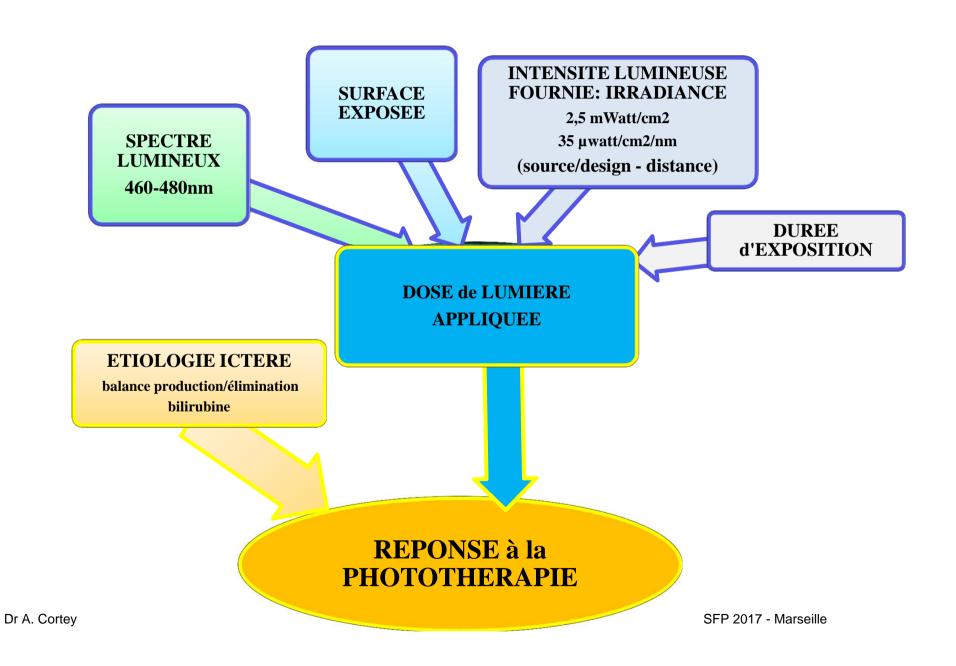

Photothérapie - mécanismes d'action

Interaction de la lumière incidente avec la bilirubine non

conjuguée au niveau cutané :

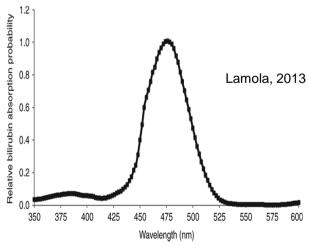
 Production de photo-dérivés directement éliminés en court-circuitant le foie (c'est-àdire l'étape limitante du métabolisme chez le nouveau-né)

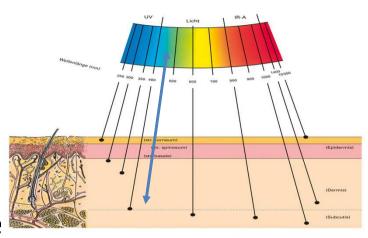
- ⇒ Photothérapie facilite l'élimination de la bilirubine
- ⇒ PT n'influence pas la production de bilirubine
 - ⇒ « résistance relative à la photothérapie des hyperbilirubinémies des hémolyses »

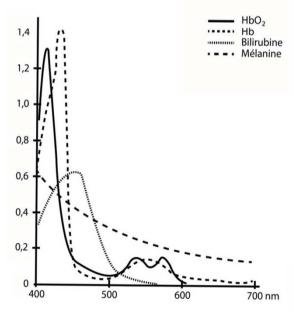


Photothérapie: principe actif

- La lumière est le principe actif de la photothérapie de l'ictère néonatal:
 - Forme d'énergie transportée par une onde électromagnétique, constituée de photons qui sont les « molécules » de principe actif
 - Photon transporte energie inversement proportionnelle à sa longueur d'onde
- la quantité totale de photons à laquelle la bilirubine va être exposée correspond à la dose de principe actif;
- ⇒ La photothérapie peut donc se prescrire comme un antibiotique en dosede lumière

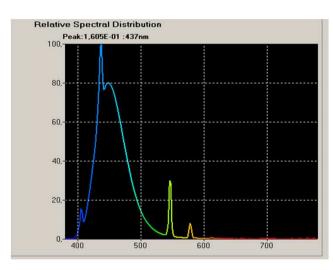


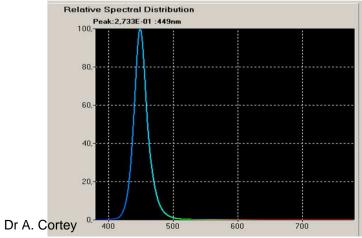

Réponse photothérapie

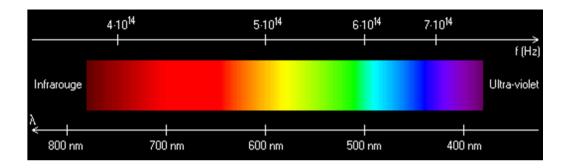


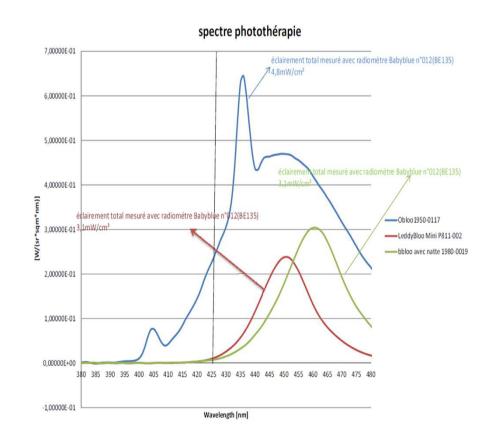
Dose de lumière: longueur d'onde

- Absorption de la lumière par la bilirubine est maximale entre 420 et 490nm et en compétition avec l'hémoglobine et la mélanine
- Longueur d'onde d'absorption maximale par bilirubine sans influence de la concentration totale en bili ni de l'hématocrite: 476-478 nm








longueur d'onde et spectre émis

⇒ pas d'UV

SFP 2017 - Marseille

Dose de lumière et irradiance

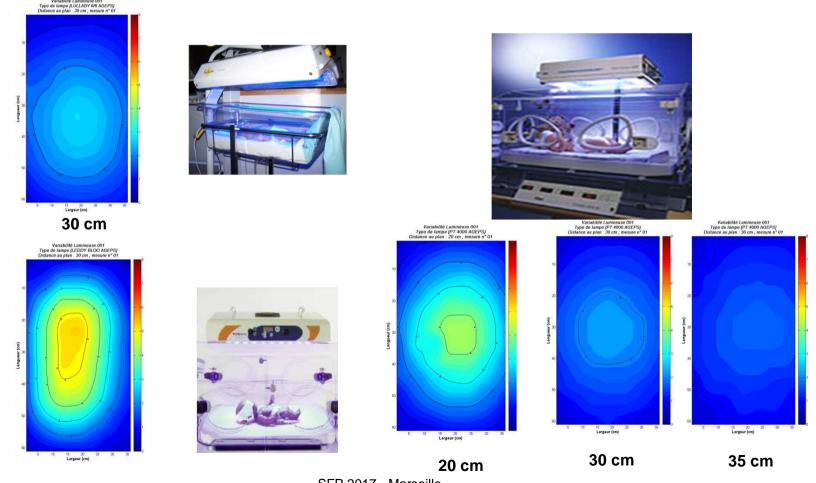
• Plus l'irradiance augmente plus la décroissance de la bili est rapide

Changes in TsB	n Relation to	Light Irradiance	Categorized	Into 3 Groups
----------------	---------------	------------------	-------------	---------------

	< 30	3045	> 45	P value	
Infants (n)	52	78	21		Vanborg Pk, 2012
TsB₀ (μmol/L)°	305 (279-343)	286 (266–300)	297 (254–333)	.12	3 ,
TsB ₂₄ (μmol/L)ª	195 (170-234)	166 (144-178)	157 (124–186)	<.001	
ΔTsB ₀₋₂₄ (μmol/L)a	108 (99-119)	117 (108 126)	170 (122-140)	<.001	_
Δ TsB ₀₋₂₄ (%) ^a	36 (32–39)	42 ^b (40–46)	47° (44–52)	<.001	
Light irradiance (μ W/cm ² /nm) ^a	26 (24–27)	36 (36-39)	49 (4751)	<.001	

[°] Median (95% confidence interval).

Irradiance cible: 2,5-3 mwatt/cm2 ou 35-45 μwatt/cm2/nm

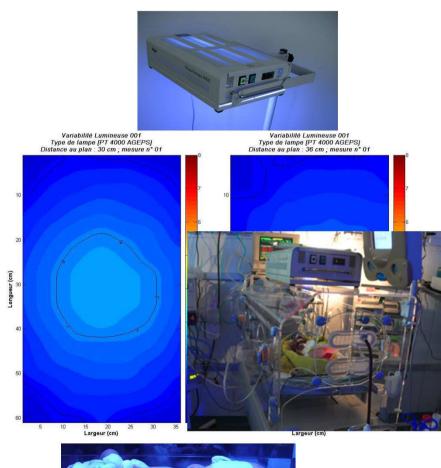

- Intensité du rayonnement émis sur la surface traitée
 - Mesurée par radiomètre; Exprimée en mWatt/cm2 ou μwatt/cm2/nm (mesure en un point du spectre)

 $^{^{\}rm b}$ <30 vs 30–45 μ W/cm²/nm; P < .001.

 $^{^{\}circ}$ 30–45 vs >45 μ W/cm²/nm: P = .03.

Irradiance en pratique

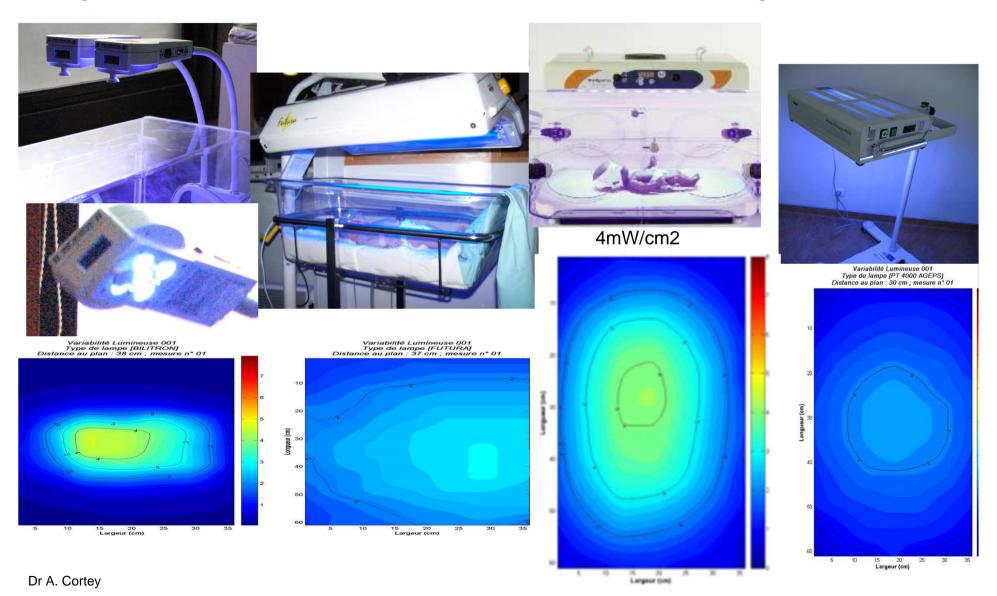
- Intensité fournie varie selon la source de lumière utilisée
- Progression de l'irradiance inversement proportionnelle à la distance source /cible

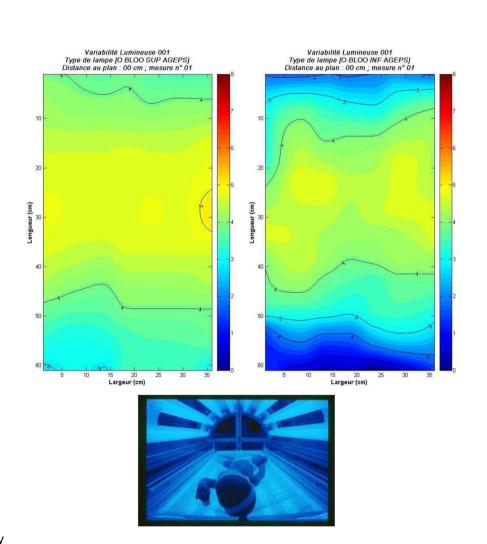


Dose de photons et surface exposée

La peau est le lieu d'action de la lumière

Plus la surface exposée à la lumière efficace est grande plus la vitesse de décroissance de la bili est rapide


- ⇒ Installation de l'enfant pendant la photothérapie
 - Contention
 - Obstacles à la lumière
- → Design



surface exposée et design

Plus la surface exposée à la lumière efficace est importante plus la vitesse de décroissance de la bilirubine est importante

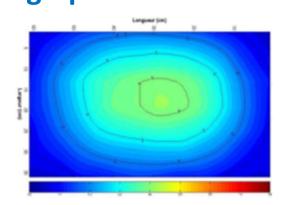
Photothérapie intensive: une irradiance forte (>30µwatt/cm2/nm) associée à une surface exposée maximale

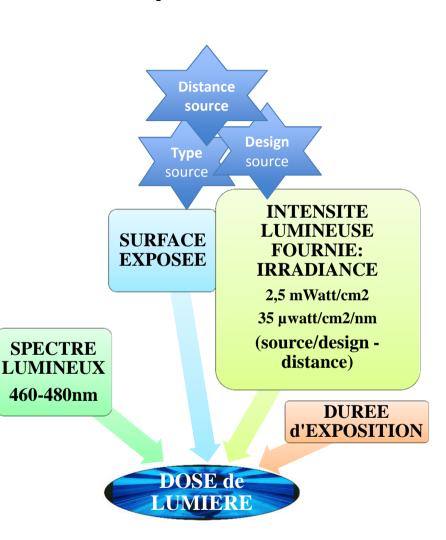
Dose de photons et surface exposée

Plus la surface exposée à la lumière efficace est importante plus la vitesse de décroissance de la bilirubine est importante

 ⇒ Installation de l'enfant pendant la photothérapie

- Contention
- Obstacles à la lumière
- ⇒ Design
 - Lumière sous la rampe
 - photothérapies de contact
 - Accès possible à d'autres zones
 - Traitement non interrompu par les soins ou le peau à peau





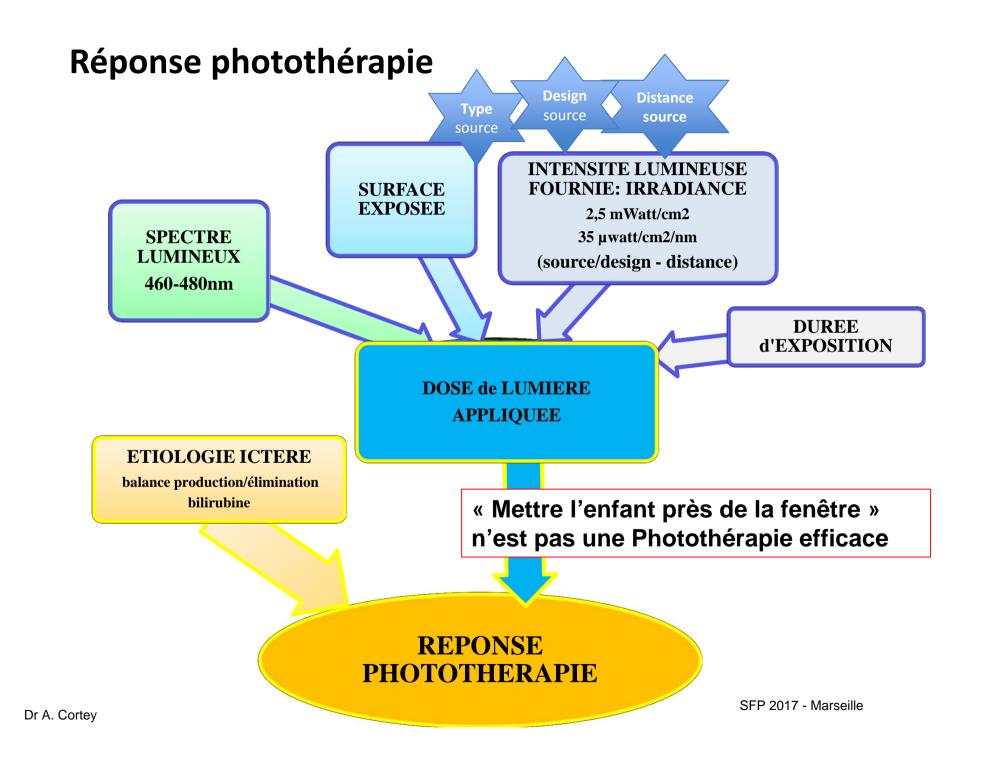
Pour prescrire : connaitre dispositifs

- Toujours dans le « bon spectre » mais centrage varie
- source lumineuse et design différents ⇒ intensité fournie à la peau ≠ et surface exposée ≠
- ⇒ comparaison standardisée:
 Mesure avec un même
 radiomètre, en de multiples
 points du plan de couchage :
 cartographie lumineuse

Comparer les différents appareils

Device	Manufacturer	Dist. to pt. (cm)	Surface area (cm², L × W)	% Treatable BSA		Spectrum Bandwick (nm)	Bandwidth	Peak (nm)	(Irradiance *		
				Preterm	Term	total (IIII)	(1111)	(1111)	Min	Max	Mean \pm SD	
LED												
neoBLUE†	Natus Medical, San Carlos, CA	30	1152 (48 × 24)	100	100	420–540	26	462	12	37	27 ± 7	
PortaBed [‡]	Stanford University Stanford, CA	≥5	1740 (30 × 60)	100	100	425–540	27	463	40	76	67 ± 8	
Fluorescent												
BiliLite† CW/BB	Olympic Medical San Carlos, CA	45	2928 (48 × 61)	100	100	380–720	69	578	6	10	8 ± 1	
BiliLite BB [†]	Olympic Medical San Carlos, CA	45	2928 (48 × 61)	100	100	400–550	35	445	11	22	17 ± 2	
BiliLite TL52 [†]	Olympic Medical San Carlos, CA	45	2928 (48 × 61)	100	100	400–626	69	437	13	23	19 ± 3	
BiliBed [‡]	Medela, McHenry, IL	О	693 (21 × 33)	95	71	400–560	80	436	14	59	36 ± 2	
Halogen												
MinBiliLite†	Olympic Medical San Carlos, CA	45	490 (25 diam)	77	54	350-800	190	576	<1	19	7 ± 5	
Phototherapy Lite [†]	Healthdyne Technologies Marietta, GA	45	490 (25 diam)	77	54	370-850	200	604	<1	17	5 ± 5	
Halogen Fiberoptic												
BiliBlanket¶	Ohmeda, Fairfield, CT	О	150 (10 × 15)	40	24	390–600	70	533	11	11	21 ± 6	
Wallaby II Preterm¶	Healthdyne Technologies	0	117 (9 × 13)	33	19	400–560	45	513	7	7	16 ± 6	
Wallaby II Term¶	Healthdyne Technologies	О	280 (8 × 35)	62	53	400–560	45	513	6	6	8 ± 1	
SpotLight 1000 [†] ¶	Healthdyne Technologies	45	490 (25 diam)	77	54	400–560	45	513	1	13	6 ± 3	

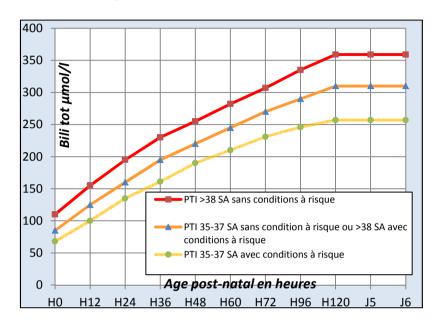
^{*}As measured with the BiliBlanket Meter I (Ohmeda/GE Healthcare) and presented as (μ W/cm²/nm); all devices are marketed in the United States except the PortaBed, which is a nonlicensed Stanford University developed research device.

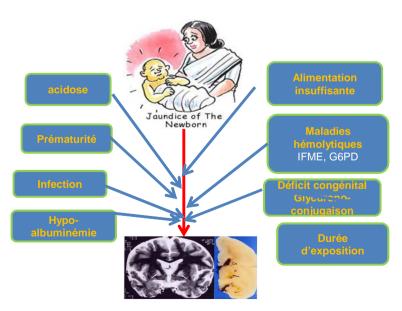

CW = cool white; BB = special blue.

Vreman, 2012

[†]Overhead

[‡]Underneath


[¶]Wrap-around device



Prescrire une photothérapie

- Dose de lumière
 - selon
 - dosage sanguin de bilirubine totale (H post-nat) et âge gestationnel et vulnérabilité
 - Étiologie suspectée de l'ictère
 - Comprend
 - Type de dispositif et installation
 - Durée de traitement
- Surveillance:
 - Effets secondaires :
 - Température
 - Protection oculaire
 - Monitorage fonction vitale
 - Efficacité : dosage sanguin de bilirubine
 dès la fin de la séance car

BTS =Bili produite - Bili éliminée

